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A simple model for estimation of the internal temperature of ions, moving in a monoatomic gas under the
influence of an electric field, is considered. The basic assumption of the model is formation of ion-atom
complexes in a quasi-equilibrium state for some of the ion-atom collisions, and other collisions are
considered as elastic in which no energy is transferred to the internal energy of the ion. For Langevin
collision cross sections, the model allows coinciding equations to be obtained for internal and translational
or effective temperatures of ions, in cases where the polarization energy of the atom in the local electric field
of the ion is not taken into account. The influence of this polarization energy leads, in the context of the
model considered here, to an increase of internal ion temperature by a factor of 1.3–1.5 compared to its
effective temperature (which coincides with the buffer gas temperature for zero external electric field).
Using this result the significant discrepancies in activation energies for dissociation of protonated leucine
enkephalin, measured by different methods, are qualitatively explained. Copyright# 1999 John Wiley &
Sons, Ltd.
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In a number of tandem mass spectrometry methods for
structure investigations of gaseous polyatomic ions, ‘slow
heating’ methods1 seem to be among the most promising.
The main advantage of these methods is the possibility for
acquisition of ion dissociation rates as a function of internal
ion temperature, thus giving information about dissociation
energetics. Compared to relatively complicated methods in
this field such as continuous wave infrared multiphoton
dissociation (cwIRMPD),2–5 or dissociation induced by
blackbody radiation,6–9 collisional activation in a quadru-
pole ion trap10 seems to be much simpler and more suitable
for wide use. In one sense a similar approach is realized in
the molecular ion reactor (MIR) used in the MIR time-of-
flight mass spectrometry (TOFMS) instrument.11 The
central question for approaches of this type is the estimation
of the internal temperature of ions moving in a gas under the
influence of some combination of electric fields. The first
step for such an estimation is evaluation of ion heating in a
constant and uniform electric field under steady state
conditions.

Many studies in the literature devoted to ion transport
under electric fields in gases that address ion ‘temperature’
are concerned with ion kinetic energy and not the internal
energy. Two papers published recently by Goeringer and
McLuckey12,13seem to be the most relevant to this problem.
These authors proposed an approach for estimation of the

internal temperature of ions moving in an atomic buffer gas
under an electric field by calculation of their translational or
effective temperatureTeff. Their basic assumption was
coincidence ofTeff with Ti (the internal temperature of the
ions) independent of differences between elastic and
inelastic collisions, and for cases in which all possible
ways of ion internal energy exchange other than ion-atom
collisions could be neglected. In those cases in which this
assumption is valid, the problem of estimation of ion
internal temperature should be simplified significantly, as
the corresponding formalism for calculation of ion effective
temperature is in general much simpler than that for
evaluation of excitation of internal degrees of freedom of
ions by inelastic collisions. Unfortunately, practical use of
this principle has proved to be not so successful, and the
same authors in their most recent paper14 used thermal
heating of ions instead of field heating for kinetic
measurement of fragmentation of ions derived from leucine
enkephalin.

Nevertheless, it seemed to be of interest to try to find
some evidence in support of this postulate, or to determine
the conditions for it to be valid. In addition, such
considerations are useful for simulation of ion dynamics
in molecular ion reactors of the type used in our MIR-
TOFMS instrument, and for interpretation of the corre-
sponding experimental data.

LANGEVIN MODEL FOR ION-ATOM COLLISIONS

When the ion is small or its charge is large enough, the
interaction of a colliding ion and atom is determined mainly
by polarization of the atom in the local electric field of the
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whereRj is the distance between the atom andj-th charge
location in the ion,n is the number of charges,b is the atom
polarizability, ande0 is the value of a single elementary
charge. The process of ion-atom collisions determined by
potential of this kind, for small ions with a single charge,
was considered by Langevin at the beginning of this
century.15 It was found that the atom can be captured by the
ion if the distance between them becomes less than some
critical value, and the cross section for such collisions is
inversely proportional to the relative ion-atom velocity. For
potential functions given by Eqn 1 this property is only
approximately valid but, for simplicity of analysis, it will be
used further here with the understanding that the term
‘Langevin collision cross section’ is understood to be a cross
section inversely proportional to the ion-atom relative
velocity.

Such a property of collision cross sections was implicitly
used in the derivation of the equation forTeff (Eqn 5 in the
paper of Goeringer and McLuckey13). For this purpose these
authors used for the average kinetic energy of the colliding
atom the value 3/2kT, and for that of the ion a value
(mvd

2/2� 3/2kTeff). Herevd is the average drift velocity of
the ion, T is the buffer gas temperature, and k is the
Boltzmann constant. It is known, however, that the velocity
distribution of gas atoms colliding with the walls of a
containing vessel is equal to the velocity distribution of the
atoms inside the vessel multiplied by this velocity16 (for a
moving surface this multiplier should be the corresponding
relative velocity). In other words, the probability density for
atoms colliding with the walls to have the kinetic energye is
proportional to [". exp (ÿ"/kT)], and the average kinetic
energy of such atoms is:R1

0 "2 exp�ÿ"=kT�d"R1
0 " exp�ÿ"=kT�d" � 2kT �2�

For ions large enough that they can be considered to be a
‘wall’, this result means that, for a constant cross section for
ion-atom collisions, the average kinetic energy of atoms
colliding with a very heavy ion without any external electric
field should be 2kT and not 1.5kT.

In the Langevin case where the ion-atom collision cross
section is inversely proportional to their relative velocity,
the velocity distribution function of colliding atoms
becomes the same as that for the atoms inside the vessel.
This means that the probability of a collision of an
approaching ion and atom does not depend on their relative
velocity as well as on their own velocities. In turn this
means also that, independent of the ion drift velocity (or the
field strength), the distribution in the direction of motion of
atoms colliding with the ion should be uniform or isotropic
in the laboratory system of reference, and the average
momentum of colliding atoms would be zero. It also means
that the average kinetic energy of colliding atoms would be
1.5kT, and the averaged stochastic part of the kinetic energy
of the colliding ions would be 1.5kTeff.

Another important property of the Langevin model of
ion-atom collisions is that, at least for large polyatomic ions,
the directions of motion of recoiling atoms after collision in
the centre-of-mass reference system may be considered to

be isotropic and independent of the direction of this centre-
of-mass motion as the atom should impact physically on
some part of the randomly oriented ion with a complicated
‘surface’. For this reason it is probable that some atoms will
not leave the ion immediately after the initial impact. It is
sufficient for this purpose to lose some part of the initial
kinetic energy of the atom such that the remaining energy is
less than the polarization energy of the atom at the point of
impact. Thus the atom, after an unsuccessful attempt to
escape, returns back to the ion, and such impacts continue
up to the moment when appropriate energy fluctuations in
the ion give the atom sufficient energy to be released. Thus
long-lived ion-atom collision complex formation is possi-
ble, and a quasi-equilibrium state of this complex may be
achieved. (As pointed out by Talrose17 some time ago,
formation of such complexes with lifetimes in the range of
10ÿ8–10ÿ7 sec, and with a nearly uniform energy distribu-
tion for their internal degrees of freedom, is highly probable
in ion-molecule collisions). Further, for simplicity, all ion-
atom collisions can be divided into two cases: elastic
collisions involving no energy transfers into internal energy
of the ion, and collisions forming quasi-equilibrium ion-
atom complexes but with lifetimes much less than the time
between collisions. However, as will be concluded from the
formalism developed below, the latter restriction is of no
importance for ions which are sufficiently large.

The present considerations are based on more detailed
analysis of the same two equations (Eqns 1 and 2 in Ref. 13)
for momentum and energy gained from the uniform and
constant electric fieldE0 in unit time by atoms colliding
with the ion, as in the steady state all averaged properties of
the ion are unchanged. The remaining question concerns
what average ion velocity before the collision should be
used. One investigation13 used the average ion drift velocity
vd, but this assumption seems to us to be not evident. Ions
are accelerated in the uniform electric field between
collisions, so that just before collision the velocity of the
ion in the field direction is maximal compared to all other
times between this and the preceding collision, and it is
difficult to expect that in any case the average ion velocity
just before collisionvmax should be equal to the time-
average (or drift velocity) of the ionvd.

To investigate when this assumption13 is valid, consider
the consequences of the momentum conservation law for
ion-atom collisions which are proved to be essentially the
same for both types of collision mentioned above. For the
velocity vector~vc of the ion-atom complex (their centre-of-
mass) at the moment of collision, it is possible to write:

m~v�M~V � �m�M�~vc;

~vc � m~v�M~V
m�M

�3�

where~v is the ion velocity vector before collision,M is the
atom mass and~V is its velocity vector. (Here, and
subsequently, all velocities of the ion and the atom ‘before
and after collision’ are taken to refer to large enough ion-
atom separations that the influence of the polarization
potential can be ignored).

Let the field direction coincide with thex-axis. Denote
the x-component of the velocity of the recoiling ion in the
centre-of-mass reference system (the system which is
moving with constant velocity vector~vc) as g'x. Denoting
by vk

max and vk
min the ion velocity component in thex-
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direction just before and after thek-th collision, and using
Eqn 3, gives:

vk
min �

mvk
max�MVx

m�M
� g0x �4�

After averaging, with average values ofVx and ofgx' both
zero, and withvmin = hvk

min i, gives:

vmin � mvmax

m�M
�5�

The same expression applies to the average velocity of
the atom after collision with the ion, and on average each
such atom acquires momentum equal toMvmin. The
following equation, for momentum gained from the electric
field E0 in unit time, is then valid:

eE0 � �vmax� �6�
where e is the ion charge,n is the ion-neutral collision
frequency, andm = mM/(m�M) is the reduced mass.

To relatevmaxto vd it is necessary to have the distribution
function for the duration of time intervals between
collisions, which can be written in the form:

P�t� � � exp�ÿ�t� �7�
whereP(t) is the density of probability that the time between
collisions of the ion with the atoms is equal tot. Such a
distribution is valid for any series of independent events (or
Poisson process18), and the series of ion-atom collisions
closely approximates such processes. From Eqn 7 it is easy
to derive for average values the obvious equalityhti = 1/n,
and also the not so evident oneht2i = 2/n2.

For vd the following expression may be written:

vd � lim
N!1

1
�N ÿ �1

XNÿ1

k�1

Z�k�1

�k

�vk
min� eE0�� ÿ �k�=m�d� �8�

where�k is the time of thek-th collision. After integrating
and substitutingtk = (�k � 1ÿ �k), this equation may be
transformed to:

vd � lim
N!1

N ÿ 1
�N ÿ �1

� lim
N!1

1
N ÿ 1

XNÿ1

k�1

vk
mintk � lim

N!1
eE0

2m�N ÿ 1�
XNÿ1

k�1

t2k

 !
�9�

If the random valuesvk
min andtk are independent, the first

term in the brackets on the right side of Eqn 9 may be
replaced byvmin/n. This is exactly true when the probability
of ion-atom collision is independent of the ion velocity, as is
the case for Langevin collisions. For large ions this result is
always approximately true for small electric fields and
buffer gas temperatures which are not too large. For the
second term in the brackets of Eqn 9 the average value
ht2i = 2/n2, and Eqn 6 may be used:

vd � � vmin

�
� �vmax

m�

� �
�10�

After substitution using Eqn 5 andm = mM/(m�M), the
equalityvd = vmax is derived, and the equation for momen-

tum may be written in the form of Eqn 1 from Ref. 13:

eE0 � �vd� �11�

ESTIMATION OF EFFECTIVE AND INTERNAL
TEMPERATURES OF IONS; RESULTS AND
DISCUSSION

To derive finally the expressions for effective and internal
temperatures of the ion, we write down the equation for the
energy gained from the field in unit time, which should be
equal to the average energy acquired by the atom after each
collision multiplied by the collision frequency:

eE0vd � M
2
h�~V 0; ~V 0� ÿ �~V; ~V�i� �12�

where~V' is the atom velocity vector after collision. If we
denote by~G and~G' the atom velocity vectors before and
after collision, in the centre-of-mass reference system,
which implies that~V = ~vc� ~G and~V' = ~vc � ~G', and use the
notations~g and~g' for the corresponding velocity vectors of
the ion, it is possible to write:

m~g�M~G� 0;

~G� ÿ m
M
~g;

~V �~vc ÿ m
M
~g �13�

~g �~vÿm~v�M~V
m�M

� M
m�M

�~vÿ ~V� �14�
m~g0 �M~G0 � 0;

~G0 � ÿ m
M
~g

~V 0 �~vc ÿ m
M
~g0 �15�

After substituting Eqns 13 and 15 into 12, the following
equations may be written:

eE0vd � mh�~vc;~g� ÿ �~vc;~g
0� � m

2M
��~g0;~g0� ÿ �~g;~g��i� �16�

eE0vd � �

m�M
hm�~v;~v�ÿ�mÿM��~v; ~V�ÿM�~V; ~V�i� �17�

h�~g0;~g0� ÿ �~g;~g�i � 0 �18�
Equation 18 is written only for inelastic collisions

because, for each elastic collision, the last term in the
averaging brackets of Eqn 16 is zero due to kinetic energy
conservation. For inelastic collisions Eqn 18 describes the
fact that, at steady state, on average the initial kinetic energy
of the collision complex in the centre-of-mass reference
system is equal to the kinetic energy of this complex after
collision. Thus the last term in the averaging brackets of Eqn
16 disappears. For the second term in these brackets it
should be noted that averaging of the product (~vc,~g') gives
zero, as it can be postulated that the distribution of the
vector~g' is isotropic and independent of the direction of~vc.
After substituting Eqn 14 and the expression (Eqn 3) for the
vector~vc, Eqn 17 actually coincides with Eqn 2 from Ref. 13
if the distribution of the vector~V is considered as isotropic
(so thath (~v, ~V) i is zero). As this equation considers only
the velocities of ion and atom before collision, it is valid for
all types of collisions, and not only foratomscolliding with
the polyatomic ions.
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This equation, after substituting Eqn 11 and replacing
hm(~v,~v) i by [mvd

2� 3kTeff] andhM(~V, ~V) i by 3kT gives:

�v2
d� �

�

m�M
hm�~v;~v� ÿM�~V; ~V�i� �19�

Mv2
d � 3kTeff ÿ 3kT

Teff � T �Mv2
d

3k
�20�

The last equation is actually the same as Eqn 5 in Ref. 13,
given there for elastic collisions and a weak electric field.

To derive an equation forTi (the internal temperature of
the ions), transform Eqn 18 taking into account that:

hm�~g0;~g0� �M�~G0; ~G0�i � h�m�m2=M��~g0;~g0�i � 3kTi

in the equilibrium state if the polarization energy of the
atoms is ignored, and if there are no energy preferences for
inelastic collisions:

h�~g;~g�i � M
mM�m2

3kTi ;

�h�~v;~v� ÿ 2�~v; ~V� � �~V; ~V�i � 3kTi ; �21�
M

�m�M� �mv2
d=3k� Teff � � m

�m�M�T � Ti : �22�

Substituting Eqn 20 into this equation finally gives:

Ti � T �Mv2
d

3k
: �23�

ThusTeff andTi coincide at steady state for the conditions
used above for deriving this equation.

Now assume that ion-atom collision cross sections can be
considered to be constant. Suppose further for simplicity
that the ion mass is large enough compared to that of the
atom, and that the equalityvd = vmax is valid. In this case the
atoms colliding with the ion would have a negative average
component of velocityh Vx i in the field direction, and Eqn
11 via accurate averaging of Eqn 4 and the new momentum
balance, transforms to:

eEo � ��vd ÿ hVxi��
After substituting this equation into Eqn 17, and taking

into account thatvd Vx for large ions equalsh(~v, ~V)i, the
same result as Eqn 19 for calculation ofTeff is derived in
the case considered here. At the same time the term
hÿ2 (~v,~V)i in Eqn 21 forTi becomes positive, and therefore
Ti > Teff. Taking into account the increase of average kinetic
energy of the colliding atom and ion for the condition of
constant collision cross section stipulated at the beginning
of this paragraph can only enhance this inequality.

Another possible reason for lack of coincidence ofTi and
Teff, at least for large enough ions, is significant polarization
energy of the colliding atom in the local electric field of the
ion for Langevin collisions. In this case Eqn 21 should have
a term on the right side smaller than 3kTi. This decrease of
this term is connected with the polarization energy loss of
the recoiling atom, and may be estimated using the
following simple considerations. In order to achieve thermal
equilibrium in the ion-atom collision complex, its minimum
lifetime should be about ten average time intervals between
the ion-atom impacts within that complex. This implies that,
assuming that the Arrhenius law for unimolecular decay is
valid, exp (Epol/kTI)� 10, and the polarization energy of the

atomEpol should not be less than 2kTi. It means also that the
atom recoiling from the ion can be released from the
complex only if its initial kinetic energy is more than
Epol = 2kTI, and the average kinetic energy of such atoms
may be calculated as:

�EkinjEkin > Epol �
R1

Epol
"
���
"
p

exp�ÿ"=kTi�d"R1
Epol

���
"
p

exp�ÿ"=kTi�d"
�24�

Numerically the average initial kinetic energy of such atoms
may be calculated to be about (Epol� 1.15 kTi). Therefore
the right side of Eqn 21 becomes close to 2.3 kTi and Ti

increases by a factor of about 1.3 in comparison with the
case of zero polarization energy. In cases where the lifetime
of the ion-atom complex isnot less than 10ÿ8 sec (see Ref.
17) the polarization energy is estimated to be more than
10 kTi. It may be shown using Eqn 24 that, for such
polarization energy, the average initial kinetic energy of
atoms released from the complex is slightly more than
(Epol� kTI), and andTi increases by a factor of about 1.43–
1.5 in comparison to the case when polarization energy of
the atom is not taken into account.

The possible objection, that the value ofTi used here may
be higher than that corresponding to the time-averaged
internal energy of the ion, because the present value
corresponds to the moment just after collision, may be
rejected at least for large ions. In this case the influence of a
single collision on the ion’s average internal energy per
degree of freedom (proportional to the internal temperature)
may be negligibly small. At the same time for Langevin
collisions Eqn 20 would still be valid, and the inequality
TI > Teff follows.

As Teff for zero external field is equal to the buffer gas
temperature, we come to the following unexpected conclu-
sion: in the context of the present model, the internal
temperature of the ion is significantly greater than the tem-
perature of a buffer gas in the state of thermal equilibrium.
However, simple reasoning shows that it is also reasonable
to expect some effect of this type in the case of no collision
complex formation. If the atom has non-zero polarizability
it has extra kinetic energy, equal to the energy of its
polarization at the moment of ion-atom impact, in addition
to its thermal kinetic energy. For the ion internal degrees of
freedom this is almost the same as increasing the
temperature of the buffer gas if no complex is formed. In
cases of complex formation but for collision cross sections
assumed to be constant rather than the Langevin values, the
increase of ion internal temperature may be even greater
than by the factor of 1.5, at least for large enough ions. It
may be seen that the left side of Eqn 21 for large ions, in the
case of zero external field and constant collision cross
sections, is equal to 4kT. The right side of this equation, for
sufficiently long-lived complexes, is 2kTi. Thus the
maximum factor for increase of ion internal temperature is
2.

As some kind of experimental confirmation of this
conclusion, the results of investigations of dissociation of
protonated leucine enkephalin from Refs. 14 and 19 can be
considered. In Ref. 14 the kinetics of this process was
measured in an ion trap. The buffer gas was helium, at a
pressure of about 10ÿ4 Torr. The temperature of the buffer
gas was changed thermally in a relatively narrow interval
around 200°C. The Arrhenius plot for dissociation constants
was quite good,14 and gives for the activation energy
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Ea = 1.28� 0.08 eV, and for the preexponential factor log
A = 12.55� 0.87. In Ref. 19 the same kinetics were
measured in a heated capillary in an electrospray ion
source. The measurements were performed using air at
about 0.1 atmospheres pressure. The temperature range was
360–400°C. The Arrhenius plot for dissociation constants
was also good,19 and gaveEa = 38.3 kcal/mol = 1.66 eV,
and for the pre-exponential factor log A = 15.7. Unfortu-
nately, experimental uncertainties were not given.19 In both
papers14,19 it was shown that conditions were close enough
to the high-pressure limit to give a good approximation to
the true Arrhenius parameters.

For the diatomic molecules of air, the expected maximum
increase of internal temperature for large ions may be
estimated in the same way as for a monoatomic gas on
taking into account the following factors:

the average energy of the molecules approaching the ion
has an additional contribution of rotational energy of kT;
the molecules recoiling from the quasi-equilibrium ion-
molecule complex have, on average, an additional
rotation energy kTI which is not influenced noticeably
by the local ion electric field;
excitation of the molecular vibrations of the diatomic
molecules probably may be neglected since the temper-
atures were not very high;19

Eqn 21 should be treated as an averaged energy balance
for the ion in the centre-of-mass reference system.

For Langevin collisions the left side of Eqn 21 for zero
external field for large ions should be equal to 5kT. The
right side of this equation for long-lived complex formation
is 4kTi. Thus the maximum factor for increase of the internal
ion temperatureTI in this case is 5/4. For the case of
constant collision cross sections and large ions, this
equation transforms to: 6kT = 4kTi, and the maximum
factor would be 3/2.

Using these considerations and the maximum factors for
increase ofTi for a monoatomic buffer gas, it is possible to
estimate the connection between measured activation
energies in the two cases (Refs. 14 and 19) if it is supposed
that these experiments involved the formation of long-lived
ion-atom and ion-molecule collision complexes. For
Langevin collision cross sections the apparent activation
energy for a diatomic buffer gas should be 6/5 of that for a
monoatomic gas. For constant collision cross sections this
coefficient is 4/3. ForEa = 1.28 eV, measured for helium,14

the expected values for air would be 1.54 eV for Langevin
and 1.71 eV for constant collision cross sections, respec-
tively. The measured value 1.66 eV19 lies between these
values. It is not so evident, but quite possible, that the
difference in preexponential factors may be ascribed to the
slow decrease ofTi /Teff with temperature.

For estimation of the true activation energy it is sufficient
to multiply the measured value by the corresponding ratio
Ti /Teff. For measurements in an ion trap with helium14 this
gives 1.92 and 2.56 eV for Langevin and constant collision
cross sections, respectively. For a heated capillary with air19

these values are 2.08 and 2.49 eV, which are the same to
within the uncertainties of the measurements. As was
pointed out14 the main primary product of dissociation of
protonated leucine enkephalin is the b4 ion, which is
produced by simple cleavage of the peptide bond adjacent to
the C-terminus of this compound. Unfortunately we could
not find in the literature any direct data for dissociation
energy of peptide bonds in neutral molecules. Only two

examples for dissociation energies of amide bonds mea-
sured by the electron impact method were found.20 The
energies for the following two reactions were given:

�CH3�2NCHO�N(CH3�2�HCOÿ59 kcal/mol�2:56 eV;

CH3CON(CH3�2�CH3CO�N(CH3�2ÿ75 kcal/mol�3:26 eV:

Of course these data cannot be directly transferred to
dissociation of peptide bonds in protonated peptides, but
some relationship is possible as bonds of a type similar to
peptide bonds dissociate in both of these cases.20

CONCLUSIONS

Using formalisms of classical mechanics and molecular
physics, the following results were derived from analysis of
ion heating in a gas under a constant and uniform electric
field in the steady state:

1. the coinciding equations for effective and internal
temperatures of ions moving in a monoatomic gas were
derived for the case in which ion-atom collisions provide the
single significant way for internal ion energy exchange, and
where:

ion-atom collision cross sections are inversely propor-
tional to the ion-atom relative velocity;
all collisions can be considered either as elastic collisions
with no energy transfers to internal energy of the ion, or
as fully inelastic collisions when ion-atom complexes in a
quasi-equilibrium state are formed but with lifetimes
much less than the average time between collisions;
there are no collision energy preferences for collision to
be elastic or inelastic;
for both types of collision the velocity distributions of
recoiling ion and atom after collision, in the centre-of-
mass reference system, are isotropic;
the influence of the local electric field of the ion is not
taken into account;

2. when collision cross sections are assumed to be constant,
and the other properties of the collisions are as before, at
least for large ionsTI > Teff;

3. for the Langevin collision model, in which polarization
energy of the colliding atom in the local electric field of the
ion is taken into account, and when all other properties of
the collisions are the same as in case 1, the inequality
TI > Teff is valid at least for large ions; it may be estimated
that, in the context of the present model,Ti is increased by a
factor of 1.3–1.5 compared toTeff;

4. because under these conditions for zero external fieldTeff

coincides with the buffer gas temperatureT, it follows that
TI > T in the thermal equilibrium state, and theTi/Teff ratios
given above are valid for this case also;

5. for long-lived collision complex formation in zero
external field, the following maximum factors forTi/Teff

ratios were also derived:
for constant collision cross section and atomic buffer
gas, 2;
for Langevin collision cross section and diatomic buffer
gas, 1.25;
for constant collision cross section and diatomic buffer
gas, 1.5;

6. using these theoretical results, the significant discrepan-
cies between the experimental activation energies for
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dissociation of protonated leucine enkephalin, measured by
different methods,14,19were qualitatively explained.
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